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Thermocapillary motion in a system of actual liquids is investigated on the basis of 
nonlinear equations. The existence of both steady-state and oscillatory convection 
conditions has been established. 

Linear problems of convective equilibrium stability of two-layer systems were investi- 
gated in [1-4]. An investigtion of finite-amplitude convective motion in a system with an 
interface, produced by the thermocapillary mechanism, was performed in [5]. Systems of liquids 
with simulator parameters were considered in that paper. 

i. Assume that a cavity with a rectangular cross section is filled with two viscous, 
immiscible liquids with different characteristics. The coordinate origin is placed at the 
interface, the x axis is horizontal, and the y axis is directed vertically upward. The 
interface is assumed to be flat and nondeformable. The case of equal-thickness layers is 
contemplated. The surface tension coefficient is a linear function of the temperature, o = 
oo - sT. The convection caused by buoyancy is neglected. 

All the quantities pertaining to the liquid filling the 0 < x < s 0 < y < a I region 
are deoted by subscript i, while the quantities pertaining to the liquid filling the 0 < x 
< s -a= < y < 0 region are denoted by subscript 2. The coefficients of dynamic and kine- 
matic viscosity, thermal conductivity, and thermal diffusivity are denoted by Bi, vi, Ki and 
Xi (i = i, 2). We shall subsequently use the following notation: ~ = ~i/~2, ~ =~{~2, ~= ~I/• 

X = %11X~, L = I/al, and a = a2/a I. We shall use a I, a~/~1, ~1, Vl/a~ and @ as the units of length, 
time, stream function, vorticity, and temperature, respectively (see Notation). Then, the 
complete nonlinear equations describing two-dimensional convection in both layers are written 

OJ.__ L + Oqz 0% O,~ &p~ = biAqh, 
at @ Ox Ox av 

A% = - -  ~h, 

O~h OT~ a ~  OT~ c~ ATi. aT----L- + . . . . . .  
at Oy Ox ax og P 

thus: 

(1) 

Here, b I = c I = i, b 2 = l/v, and c 2 = i/x. 

The boundary conditions at the horizontal solid walls are given by 

y = l ,  ~ - -  Otp~_0; T~=I; y=- -a ,  , ~ =  0~........./2 =0; T~-----0. (2) 
Oy Oy 

Two types of lateral walls are considered: 

a) free walls, 

x=O,L,  ~ , = 0 ,  Oh~i __0, OTi =0 ,  (3) 
Ox ~" Ox 

b) solid walls, 
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Fig. i. Absolute maximum value of the stream function [~m[ as a 
function of the Mr number (a, free lateral boundaries; b, solid 
lateral boundaries). 

Fig. 2. Stream function patterns for the steady-state motion. 
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Dependence of [Sl[ on t (Mr = 
5000). 

x = O, L, qh = - a*----!-z = O, T~ = y 4- •  T2 - -  x (y  +_______a) 
Ox 1 + • 1 + • 

The following conditions are satisfied at the interface: 

y = O ,  ~ l  = ~ = O, 

OT~ OT2 
Oy Oy 

0~i _ a~, TI=T2, 
ay ay 

~p~ = ~q~p~ + Mr 0771 
Ox 

(4) 

(5) 

The boundary problem (1)-(5) comprises dimensionless numbers - the Marangoni number M 
(or the related parameter Mr), the Prandtl number P, the ratios of the parameters of the 
first and the second liquid defined above, q, v, K, and X, and the geometric parameters L and 
a: 

~hXl P Xl 

2. The problem was solved by means of finite differences. We used the explicit scheme 
of the determination method with central differences. The basic calculations were performed 
with a 16 • 32 grid, while the control calculations were performed with a 20 x 40 grid. The 
Poisson equation was solved by using the iteration method. The iteration accuracy for the 
Poisson equation was equal to i0 -~ in calculating the steady-state motion, and 10 -8 in cal- 
culating the oscillatory motion. The Thom equation was used for approximating the vorticity 
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at the solid boundaries [6]. At the interface, the vorticity in the upper-lying liquid was 
calculated by means of the expression 

q% (x, 0) : - -2  [r (x, --Ay) + *l(X, Ag)I Mr 1 aT1 (x, 0), 
(Ap)'(1 + ~1) 1 + ~l Ox 

the derivation of which is similar to that of Thom's equation; the vorticity in the lower- 
lying liquid was calculated by using the last of Eqs. (5). Here, Ay is the grid spacing 
along the vertical coordinate. The temperature at the interface was determined by means of 
the relationship 

T l(x, 0 ) : T 2 ( x ,  0 ) =  

= [472 (x, --Ay) - -  72 (x, --2Ay)] + ~ [4T~ (x, Ay) ~ T, (x, 2Ay)] 
3(1 +• 

The time interval was chosen on the basis of calculation stability. 

3. Consider the water-oil system of liquids (Dow Corning N 200) with the following 
characteristics: q = 0.915, ~ = 1.116, K = 0.169, X = 0.472, P = 6.28, L = 2 and a = i. 

If the temperature gradient is perpendicular to the interface, mechanical equilibrium 
is possible in the system. If the threshold value of the Mr number is exceeded, the equili- 
brium becomes unstable, and thermocapillary convection develops in the system (Fig. i). Con- 
vective motion develops simultaneously in both layers. Since the coefficients of dynamic 
and kinematic viscosity of the liquids are close to each other, the curves of maximum motion 
intensity in the first and the second liquids virtually coincide within the scale of the 
diagram. 
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Stream function patterns corresponding to points A 
(a) and B (b) of Fig. 3. 
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Dependence of ISII on t (Mr = 7500). 
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Let us examine the case of free lateral boundaries. 

It is evident from the pattern of the stream function is,lines (Fig. 2) that the flow 
velocity is at a maximum near the interface, while the vortices are flattened, as it were, 
against the interface. 

We introduce the quantity 

I L / 2  

0 0 

as a characteristic of the flow structure. Comparison between the stream function is.lines 
indicates that the flow structure changes insignificantly during the oscillatory process 
(Figs. 3 and 4). A further increase in the Mr number is accompanied by oscillations of in- 
creasing complexity (Fig. 5), which maintain a regular character in the investigated range 
of the Mr parameter (up to Mr = 9000). 

The convection threshold rises for a cavity where all boundaries are solid (see Fig. i). 
The steady-state flow structure is similar to that shown in Fig. 2. 

NOTATION 

x, y, Cartesian coordinates; N, dynamic viscosity coefficient; v, kinematic viscosity 
coefficient; <, thermal conductivity coefficient; X, thermal diffusivity coefficient; @, 
stream function; #, vorticity; T, temperature; 8, temperature difference between the horizontal 
boundaries; L and a, geometric parameters; o, surface tension coefficient; M, Marangoni number; 
P, Prandtl number. Subscripts: i, quantities pertaining to the higher-lying liquid; 2, 
quantities pertaining to the lower-lying liquid. 

i. 
2. 
3. 
4. 
5. 
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